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PULSE COMPRESSION DEGRADATION DUE TO
OPEN LOOP ADAPTIVE CANCELLATION,
PART 111

1. INTRODUCTION

An exact expression for the perturbed sidelobe level of a compressed pulse that has been pre-
processed through an adaptive canceller is derived in Ref. 1. The pertinent assumptions of that
analysis are

1. the adaptive canceller is implemented using the Sampled Matrix Inversion (SMI) algorithm
[2] or its equivalent. the Gram-Schmidt canceller [3]

2. the input noises are temporally independent and Gaussian

3. the desired signal’s input vector (or code) is completely contained within the samples that
were used to calculate the adaptive weights and is only present in the main channel. and

4.  the adaptive weights are computed from the same data set to which they are applied (con-
current processing).

Earlier research has shown that because of finite sampling, the quiescent compressed pulse
sidelobe ievels are degraded by preprocessing the main channel mput data stream (the uncompressed
puise) through the adaptivc canceller. It was also shown that the level of degradation is independent
of whether pulse compression occurs before or after the adaptive canceller under assumption 3.

The exact expression [1] for pulse compression degradation requires computer assistance to
evaluate this expression. In Ref. 4, we derived a “‘rule of thumb’" expression that is a good approxi-
mation of the exact expression.

This report considers the case where the desired signal input waveform (or code) can extend
over any number of processing batches of the adaptive canceller. An exact result for the adaptive
range sidelobe level is derived and its associated good approximation is given. In addition, it is
show., that *he same analysis can be used to predict the canceller noise power lcvel that is induced by
having the desired signal present in the canceller weight calculation.

2. BACKGROUND
Figure 1 shows a functional block diagram of an adaptive canceller fsliowed by a puke

compressor.  The adaptive canceiler linearly weights the auxiliary channels with weights that are cal-
culated from a batch of sampled input data. The main channel consists of desired signal plus noisc

Manuscript approved April 4, 1991.
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MAIN CHANNEL (desired signal only)

l AUXILIARIES
g I 1
X1 X XN-1
l l l [ XX ) l
GSk N

v S' (perturbed desired signal)

MATCHED
FILTER:s,

1 OUTPUT

Fig. 1 — GS canceller followed by a matched filter

that may or may not be correlated with the auxiliary channels. It was shown {1] that when analyzing
the pulse compression degradation, it is only necessary to consider the interaction of the main
channel’s desired signal with the random variables in the auxiliary channels (Fig. ). Thus, for
analysis purposes, the adaptive weights of x,. n = 1,2, .... N — 1 are only a function of the
desired signal s and the samples of x,,. Furthermore, as the number of independent samples goes to
infinity, the auxiliary adaptive weights go to zero [i].

In Fig. 1, s represents the desired signal vector (or code). and x,.n =1,2..... N — 1
represents the ath auxiliary random data vector of length K. The canceller used is the Gram-Schmidt
(GS) algorithm [3]. We denote it by GSk y. where K is the number of samples per channel used to
calculate the canceller weights and N is the number of input channels (main and auxiliaries).

The pulse compressor is essentially the matched filter for a given radar waveform. Most of the
energy in the received radar waveform is compressed into a given single-range cell and. thus. the sig-
nal level can be increased significantly for detection purposes. However, some energy does leak into
the sideloce. of the compressed pulse response. resulting in low gain in range cells outside of the
given range cell. If a target or piece of clutter is large enough. it can break through and be detected
th these range sidciobes, lalsely indicating a target deteclion or masking a real target. Thus, 1t s
highly desirable to maintain a low sidelobe response.




NRL REPORT 9310

Let r equal the 2L — 1 output vector of the pulse compressor. If no adaptive canceller is used
then it is straightforward to show that

r = S's, ()

where

§ = (s, S3. ..., sL)T.

s 0 0 -0
S1 -1 Sr 0

Sp -2 Sp-y SL

st = 5y 52 83 St 2)
0 §) Al S; -
0 0 S S$; -2
0 0 o --- St

and 7.7 denotes transpose and complex conjugate transpose, respectively. S is a L X (2L — 1)
matrix called the autocorrelation function (ACF) matrix of s.

We assume for this analysis that the GS canceller processes data in blocks of K data samples per
channel. Thus, the desired signal vector may be spread across a number of sample blocks. To
analyze the resultant GS canceller output for the desired signal. we must subdivide the L length code
into M subcodes each of length K where the first and last subcodes may be partially zero-filled.
Define an augmented vector s, such that

. — ¢!l (2 My T
Sae = (810 8 s (3)

where each subcode vector "', m = 1. 2, ... M is of length K. The leftmost elements of s' and
the rightmost elements of s may be partially zero filled. 1f K, and K> are the number of nonzero
filled elements of 5" and '™ respectively, then for M = 2

L=M-2K+ K, +K>. (1)
ForM =1,

L =K, (5)
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For example, if s = (1, ~1, —1, L. I, =1, =1, 1, 1) where L = 9, K = 3, then the input
signal vectors into a GS3, canceller could be sV = (0,0, 1), s? = (-1, —1, ).
s = (1, —1, —1), and s = (1, 1, 0). Here, M = 4 and

Saug = (0, 0~ L, -1, —L 1, 1, -1, -1 1, l, O)T

Each subcode vector is input to thc GS canceller one at a time. Let s be the resultant output
vector of the canceller for each input ", m = 1, 2. ..., M, and s;,, be the resultant augmented
output vectoi. Thus,

]

— (1 (2 (MY T
St = (8, s L st (6)

is the total result output vector of length KM. This re-ultant output vector is then inputted to the
matched filter of the vector s, or equivalently, s,,,. If we set r’ equal to the response of s;,, match
filtered with s, then

r’ = Sizugszmg > M
where S,,, is defined as the KM x (2KM — 1) augmented ACF matrix of s,,, .

The results and derivations presented are the same whether we use the augmented or non-
augmented notation. Hence, we assume that all vectors are augmented and drop the augmented desig-
nation.

Vector s is often chosen so that the matched filte. response ha, low sidelobes (i.e., r(m) <<
r(0) for m # 0). However, if the desired signal is passed through a GS canceller structure, the
desired signal vector is perturbed and degradations occur in the matched filter response. Examples of
codes, that have high compression ratios and low sidelobes are the Frank [S], Lewis and Kretschmer’s
P1-P4 [6], and shift register codes [7]. All of these codes have an ACF with all sidelobes well below
the matched response. Figure 2, for example, shows the ACF of the 100-element Frank code.

0
101

-20 1

-30 4

FILTER RESPONSE IN dB

'60 T T v T 1
1 40 80 120 160 200

SAMPLE NUMBER

Fig. 2 — Frank code autocorrelation function L = 100,
zero Doppler shift and no bandwidth limitation

4
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Under the assumption that the signal vector is completely contained within a block of K samples
from which the adaptive weights are calculated (L =< K) [1], it was shown that the average pulse-
compressed sidelobe level after adaptive cancellation is given by

K(K + DA (K,N) KK + 1)

L) = SL, () +
SLa (D (K-N+ 1)K —-N+2) oD (K~N+ 1)K —N+2)

CA KNS, (D], (8)

where

SL,(I) is average pulse-compressed sidelobe level after adaptive cancellation of the Ith range
sidelobe (sidelobes are numbered 1./ = 1. 2. - - - : these can be related directly to the
elements of r’; for example, / = + 1 are the sidelobes adjacent the match point)

SL,(l) is quiescent pulse-compressed sidelobe level of the ith sidelobe (K = oo or equivalently no
adaptive cancellation before pulse compression: these can be related directly to the ele-
ments of r)

K 1s number of independent samples per channel used to calculate the adaptive canceller
weights
N is number of channels (main and auxiliaries)
s.(!) is K — Ith column of the augmented ACF matrix, S,,, / # K. and
Is.(DI* = st(Ds ().

We note that SL,(/) and SL,(!) are normalized to the mainlobe pulse compression gain (adapted or
quiescent, respectively) that is set equal to one or O dB.

The scalars A (K,N) and 4 >(K,N) are computed as follows. Consider the two parallel adap-
tive cancellers shown in Fig. 3. Define

uy,vy = arbitrary K-length main channel input ve~tors,

uy.vy = K-length main channel output vectors.

X, = (6, (1), X,2), .... x,(K)7. n =1, 2. .... N — 1, K-length random data vector
of the nth auxiliary channel.

The elements of x,,, n = 1. 2, ..., N - 1 are assumed to have the following characteristics:

. x,(k).n=1.....N — 1 k =1, .., Kare identically distributed circular Gaussian com-
plex random variables (r.v.)

2. Elx,(k)} = 0, Et]x,(k)|*} = 1. where E{-} denotes expectation and |-| denotes magni-
tude.

3. Elx, (kpxk (ky)) = Ounless ny = ny and ky = k».
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U X X *N-1 Vo %1 %2 XN-1
GSK,N GSK,N
\i \j
Un.1 V-1
Fig. 3 — Parallel N-input GS cancellers
Define
a, =1 — 2 + ! n=201 N — 2, and (9)
" K —n (K —n)}K —n+ 1)’ o ’ )
b, = I (10)
"K-nK—-n+1)
It is shown in Ref. 1 that
Ef|uy_vy_y %) Ap(KN) Ap(KNYT | Tugv |2
9 2 = ) b ll)
Effuy (IF vy -1 17 A (K.N) Ay (KN | flagl=livoll® (

where

AII(K'N)AD(K~N) N-2 |Gn bn
AnKN) ANy | T IL e, a, | (1)

Equations (11) and (12) resulted from solving the following coupled recursive relationships that were
derived in Ref. 1:

, 5 2 1
Ell IJ, alsl=F :1 ni” I - +
LUy 1Yy l' ‘ {IUV' } { K ~n (K—IZ)(K—H'FI)}

e | !
2 112 , 13
+ Effu, 1 vally [(K P — 1)} (3

6




NRL REPORT 9310

1
(K —n}K —n +1)

E{“un+l”2”vn+l“2; = El'“:lvn':} {

bl hl ’) l “
+ Effu, I vall?} |1 - —— + RIS
w2 fv. 01 { ATy ———— ’

wheren =0, 1, ..., N — .

Reference 4 derived a good approximation of SL,(/). It was shown that good approximations ot
A (K,N) and A >(K.N) are given by

. N -1 :
A (KN = |1 — (15
1 ( ) { X j
and
— 2 _
A (K.N) = (K /\:+-)(N l). (16)
K-(K+ 1
In Ref. | it was shown that
N — ] NNV -
ALKNY + A(KN) = 1 — = - - K:K - l:_ (7
AH(KN) = A::(K.i\’). 118)
and
A|:(K.1V) = A:I(I‘,..}V). (19)

3. SIDELOBE DEGRADATION: SIGNAL SEGMENTATION

In this section. we consider desired signals that are segmented and processed through the GS
canceller. We assume that the set of GS weights computed for cach K X N data block is statistically
independent from block-to-block. Let the desired signal’s input and output vectors sy and sy of a
canceller be segmented into M vectors such that

il

sp = (8§, s§'. s (20)
and

sy = 8 sE L L s D (21
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(rm)

Note that we have set s = s and sy _; = s’. Each s§" and s{"' . m = 1.2, .... M is of length K
where the end vectors may be augmented by zeros to fill out the K-length vector. Note that s, or
Sy _; can be considered augmented so that their length is KM, and that s; is normalized so that
Isoll> = 1. Similarly. let s, be a column of the augmented ACF matrix defined as

s. = (st s s (22)

€
Thus, an expression representing an output r of the matched filter can be given by
r = S:.SA\' -1 (23)
and the average adaptive pulse compression level associated with s, is given by

E "[)"- 2
SL, = “,s o (24)
Efs\ _isv_(]-}

We will derive good approximations of the numerator and denominator of this expression. The
above expectations are a tunction of two kinds of randomness: the first is the auxiliary channel data
and the second is where in time the code s begins with respect to the first segment. We evaluate the
above expectations first with respect to the auxiliary channel data and denote this expectation by
E 1.

To this end. £} shsy ;|71 is decomposed into terms dependent on the individual segments as

( M ,\r
= E 41D sy
Lom - J

-

ExHSZS.\'fl }

M M
E 1:‘, | S:'””S"\';”,) | | - E ) EJS:."”’S,'\'!'_) | ! } 2
1

n -1

m

M M
S )y (rr )

+ 3 Y Eds; sy o ECfIs syl (25)

mo=1lm. -1

We used the tact that the auxiliary random variables are assumed independent from one batch of K.
N-length sample vectors to the next to separate the expectations in this double summation given in Eq.
(25,

It is shown in Appendix A that

: N -1 .
[" tﬂi’””s(\””” — \I 1 - ! S:””/S:;h', (26,

“y b
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Thus, Eq. (25) simplifies to

M - M
E 1 2, _ E mrotm)y 12, 1 — LV____ ] ‘ g ony i 2
‘.\‘ lscs.’\'vl ( i - E .\‘ lsr SN [ ‘ K E S So
m=1 mo=1

5

N - ] ) M M () m ) (- ) -

A L X s s se 127)
m, =1 m.=1

However. it can be shown that

M M tm ) () (e ims) >
~ 1 3 N \ N — [ - Iy
E E [S(' So ] [SL' So ]* - ‘S(.S()l . 12N
m,=1 m.=1
Using Eq. (11). it is straightforward to show that
M R M s
T OELSUSE 12 = ALK N (s
m o= m=1
(29)

M
ALK N T s s
m=1
Substituting Eqgs. (28) and (29) into Eq. (27) and taking the total expectation over all random

variables results in
B

- ' 2 , N -1 ¥ ‘f A worgmy 1 2
E} ‘SFSN—I t | = AH(K. N) — | K E 7 ”Z 'S(v SO ! J
.

1 =1
N —1 . 5
+ 1_ ,Iw -
[ K J ‘S(S()l

M

)
+ A (K. N E {2 ;;s:!"’|;3|;sg">;pfj'>. (30)

m =1

At the match point, s, = sy and the summations seen in Eq. (30) are equal so that

bl N - I e
EfIsy sy |- = [1 " Fsoso |-
/ N -1 ) - (V\‘I\ NUANE] \ 3
+ A K N+ AK N - |1 = X E < Y st~ @Gb
'\ wmo- b

9
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However, in lieu of Eq. (17) and sgsg = 1,

Ak (M
/ s N -1 (K-N+ )N -1 —
E f_ Sy~ = |1 - + E . 32
tlsh—ysv -y |74 [ X J CK + 1) mr,:l Hso™ I } (32)

The expectations seen in Egs. (30) and (32) are dependent on the signal code. For a signal code
that has uniform amplitude elements. it is shown in Appendix B that

K 1[K T

2 22 + — L >K
| : L 3 LL} 3L-
Y I '

E \l E ”S:;NIHJ L o= ¢ (33)

=

1 — _L‘._ + —.‘— . L <K

3K 3KL

Note that if cither expression given in Eq. (33) is substituted into Eq. (32). the second term of Eq.
(32) 15 small with respect to the first term. Thus. a good approximation of Ef | s’ _ sy - 12 s given
hy

Y

’ 0
Eflsh sy |7} = [1 - N ’J . (34)

K

~ For unitorm amplitude clements. the expectations scen in Eq. (30) may be upper-bounded by
SV ‘
E - :1 Lsq”' - In fact. this upper bound is a good approximation of the second expectation for
m :
the near-in range sideiobes (small /). Tt may not be a good approximation of the first expectation
which s expected to be much smaller than the upper bound. Note also the form of the approximation
of A (K.N) given by Eq. (15). As a result. it can be shown that the first term in Eq. (30) is small
with respect to the sum of the second and third terms of the equation for the near-in range sidelobe
case. Hence. we delete this termy from our approximation.

Close upper bounds to 44(K. N) and A,-(K. N) are given by Egs. (15) and (16). respectively.
It these are substituted into Eq. (30). then for the near-in range sidelobes

- | \
‘.

. m~N+MN—H.{" \ ,
fslisg - + S E sy 35
] a1 LI

Dividing by E{1s\ sy | 7} as given in Eq. (34) results in

. K=N+2N-1 , [ M ]
SL, = Is'sy|~ + e E syt b (36)
B VT T {Eﬂ””‘
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We approximate

K-N+2)N-1 . N-1
K-N+DXK+1) (K-N+DK’

(37)

M
Furthermore, E { z nsb’"’ll“} can be approximated by a close upper-bound using Eq. (33).
m =}

This is

L>K

E LS syt b = %)
T s
m=1 1. L =K

Thus, substituting Eqs. (38) and (37) into Eq. (36) results in

X
T

. N -1
SL,(I) = SL,() + . L>K. 39
all) = SL4() K - N+ DL 39
and
. N -1
SLI) = SL,(I) + L = K. (40)

(K -N+ DK’

where SL (/) and SL, (/) were previously defined and / is small (near-in range sidelobe case).

We note that if the above approximations do not suffice in some cases (for example. I > > 1).
one can always use the exact formulation of SL,(/) given by the ratio of the expressions given by Eqs.
(30) and (31).

4. RESULTS

In this section, we calculate the number of independent samples per channel Ksgg necessary for
the average transient sidelobe level of the maximum quiescent sidelobe level defined by SL, to be
within 3 dB of SL,. We assume that the maximum quiescent sidelobe level occurs in the near-in
range sidelobes (which is normally the case). so that the approximations given in the previous section
are valid. We use this as a performance measure of convergence. If the average adaptive sidelobe
level SL, were plotted vs K. it would be found that SL, monotonically decreases with K and 1s
asymptotic with SL, as K — oo. The K = K3y point is representative of the “knee™ of this curve
(where SL, decreases slowly with increases in K).

To find K145, the following two equations (which result from Eqs. (39) and (40). respectively)
are solved for K yyp:

pe N -1
28L, = SL, + .
4 9 (Kwyg — N + DL

11

L > K}dB (41)
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and

= = N -1
2S8L, = SL, + . L = K.
4 (KBdB - N+ l)[( 3dB (42)

Solving Egs. (41) or (42) for Kz4g results in

-
Kypg = |1+ L (N=-1. L > Kjyp (43)
g L - SLq
and
I 1 |
Ky = 5 t 5 + ———— | N~ 1), L =< K3 (44)
2 2 (N-1D-8L,

Note that the solution for K345 depends on this solution satisfying the inequalities given with each of
the above solutions. If both inequalities are satisfied, then obviously the first solution given by Eq.
(43) is chosen because this solution is less than the solution given by Eq. (44). Appendix C shows
that at least one of the solutions given above is valid.

It is also shown in Appendix C that Eq. (43) is the solution for K4 if

or Nau_r
> ———— and L > N, 45
q L(L — Nuu.x‘) an aux (45)

where N,,, = N — 1. If either condition given by Eq. (45) is not true, then the solution given by
Eq. (44) is valid.

We can rewrite Eqgs. (43) and (44) as

X
L Y . (46)

Nuu.t L ) SL

and

Kap I \/I I
—= = = 4 — 4+ ——— . L < Kys. (4"
N 2 2 N .S 8 )

In Fig. 4. Ky / Ny 15 plotted vs L - §£q. Again, this solution is valid if Eq. (45) holds. In Fig.
5. Ky / Nuw 15 plotied vs N, - SL,. This solution is valid if Eq. (45) does not hold.

For example, let iq = 107" (or =30 dB). N,,, = 10. and L = 100. In this case. Eq. (45)
does not hold, so we use Fig. 5 to find K145/ N,,,. which approximately equals 11. As another
example, let S—I:q = 10"? (or =20 dB). N, = 10, and L = 100. In this case, the conditions given
by Eq. (45) hold. We use Fig. 4 to find K y5 / Nyo = 2.

12
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1000
o1 aux
*«+SL > ——— andlL > N
q L(L-Naux) aux
e L > K3dB
100 |
x
>
©
=z
[ea]
°
[o2]
X
10}
1 L 1 1
1073 1072 1071 1 10
CODE LENGTH « QUIESCENT SIDELOBE LEVEL, L S—Lq
Fig. 4 — Kygy vs L - SL,
1000
el Naux
e SL € ——— orlL < N
q L(L-Naux) aux
s LKy
100 %
>
=2
[}
<
m
©
™
X
10}
1 1 L S
1073 1072 107 1 10

NUMBER OF AUXILIARIES » QUIESCENT SIDELOBE LEVEL, Naux . §T.q

Fig. 5 — Kiyn /N, v$ N, - S_Lq

[
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By examining the solutions for K34p / Ny, given in Figs. 4 and 5. we make the observations
that for K345 / Ny, = 2, either N, - SL, or L - SL, must be approximately equal to one.

As noted in Refs. 1 and 4, the preceding analysis of pulse compression ar ' canceller interac-
tions can also be applied to quantify the canceller degradation caused by the presen.e of a desired sig-
nal in the samples used to calculate the adaptive canceller weights. Set

N -1
_—— L >K (48)
K - N+ 1)L
ASL,(K.N) =
N -1 < K. (49)

L=
(K - N+ DK

If the desired signal has the power o2, after pulse compression, then the maximum of the average
power residue caused by signal in the K ~ 1 range bins not containing the signal can be shown from
our analysis to approximately equal 0?ASL,(K.N) plus possibly the signal power caused by the quies-
cent compressed sidelobes. Let o2, be the quiescent output noise power level of the canceller (no
desired signal). Define

6 = ASL,(K.N). (50)

2
T min

If 6 > 1. then the signal induced power will be greater than the quiescent output noise power of the
canceller. Hence. it is desirable to choose the number of independent input samples K so that 6 < 1.
Set K = K for when 6 = 1. It is straightforward to show that

_ . '
N ! — + L . L > K, (51)
L Ohun
Ky, = J
-~ \2 b
_ o a7 (52)
N71+\/ N7l‘+(N—l), L < K.
“~ < J O fin

We note that a3 /ap,, equals the output signal-to-noise power ratio (S/N),,, of the adaptive cancelier.
Thus. Egs. (51) and (52) reduce to
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For the radar designer there is the choice of where to put the pulse compressor: before or after
the canceller. A disadvantage of placing it before the canceller is that a pulse compressor must be
placed in each antenna channel (main and auxiliaries) to maintain channel match (mismatched chan-
nels degrade canceller performance). Another disadvantage is that the pulse compressor must have
the dynamic range of the interference (possibly clutter and jamming) that has yet to be cancelled.
These disadvantages do not occur if the compressor is placed after the canceller. However. as we
have seen, a disadvantage of placing the compressor after the canceller is that the range sidelobes of
the compressed pulse increase because a finite number of samples are used to compute the canceller
weights.

It should be pointed out, however, that this effect also occurs if the desired waveform is
compressed before the canceller. In this case, it was shown [4] that the ratio of signal-induced power
to the quiescent-noise power level is given by

(&%)

g5 N -1
2. (K =N+ DK’

O min

&(pc before) =

Note that this is identical for the expression of & (pc after) if L < K (see Eqgs. (49) and (50)).
Hence, for waveform codes that have length less than the processing batch length (L < K). it is
desirable to pulse-compress after cancellation.

However, for L > K, the issue is not so clear-cut. Even though 6 (pc afier) < 6 (pc beiore)
for L > K. we must remember that the signal induces noise over KM = L samples of output data.
Thus. for M = 2, more samples are affected by degradation caused by performing pulse compression
after cancellation. As a result, for L > K, a trade-off study is necessary to determine whether one
does pulse compression before or after cancellation. The cost function associated with this trade-off
study will depend directly on the user's system parameters and needs.

One final note. For some applications, the matched filter is replaced by a filtering scheme
whereby the range sidelobes are reduced at the cxpense of signal gain at the match point. However.
the results derived in this report are also valid for the use of any filter other than the matched filter
sy. We could replace the s, seen in the “'matched filter™ block in Fig. | with a general weighting
function given by the L length vector a with elements ay. a. ... ¢; ;. In our analysis, we would
replace the S matrix defined by Eq. (2) with an A matrix whose clements are given by replacing the
s s with ¢ s in Eq. (2). The vector s, then would be taken to be any column in 4 and the analvsis
follows as given.

5. SUMMARY

This report has presented an exact expression for the perturbed range sidelobe level of a
compressed pulse that has been preprocessed through an adaptive canceller. This result is a gencrali-
zation of Refs. | and 4 where the signal was assumed to be completely contained within the
canceller’s processing batch. In this report. we allow the signal to extend over an arbitrary number
of canceller processing batches. A good approximate expression was also obtained for evaluating the
perturbed range sidelobe level. The number of independent samples per channel (main and auxi-
liaries) necessary so that the average adaptive range sidclobe level is within 3 dB of the quiescent
range sidelobe level was derived. Furthermore. the same analysis was used to predict the canceller
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noise power level that is induced by having the desired signal present in the canceller weight calcula-
tion. Placement of the pulse compressor betore or after the canceller was also considered. It was
shown that if the desired waveform’s code length L is less than or equal to the canceller’s processing
batch width K| it is desirable to place the pulse compression after the adaptive canceller. If L > K.
the issue is not so clear-cut, and a trade-off study is necessary.
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Appendix A
DERIVATION OF EQ. (26)

It is shown in Ref. 8 that if x, is the main channel K-length vector, then the resultant output
vector Yo through a GSg y canceller can be represented as

Yo = GXO, (Al

where G is the GS complementary projection matrix and is given by

! I 1
Z,Z; 2;2; Iy 1IN -
z,7 237, ZN-1ZN
In Eq. (A2). Ix is the K x K identity matrix and z,. n = I, 2, .... N — 1 is a set of orthogonal

vectors that is an orthogonal basis for the original auxiliary K-length input vectors. If we assume that
the input samples are zero mean independent, identically distributed r.v.s. it is straightforward to

show
anﬁl 1
E{—— > = — Ix foralln (A3)
2z K
k nen
Thus
N -1
EiG} = |1 - Ix. 1
{G} [ X ] K (A

Thus, for arbitrary K-length vector u

Efu'yy) = E{u’'Gxy) (AS)

v ELGIX,

= [l ~ N; l} uw'x,.
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Appendix B
DERIVATION OF EQ. (33)
M

In this appendix we derive the expected value of L |[sy]|* assuming the code element ampli-
!

m=

tudes are uniform. For any M we can write

2 K7 K3
E(M—z)K,+ Loy 2 M
{M L- L L-
B=E

) HSS"’||4} = (B1)

n =1
Ll M = 1

We distinguish between the two cases. L > Kand L < K.

v
9

(¥}

Case l: L > K

For this case M = 2. Thus from Eq. (B1). if we find expressions for E{M}. E{K7} and E!K3}.
we can find 8. Now

L=(M-2K+K, +K-. (B2)

Therefore
EM — 2} = 7‘(— (L — E{K,} — EIKA}). (B3

Thus. it we can obtain EYK |} and E{K.}. then E{M — 2} can be found by using Eq. (B3). B. sym-
metry

EtK\} = EIKst.  E{K7} = EtK3 ). (B4)

Let Probg {v} be the probability that K| = 1, where v can range from 1. 2. ... K. The start-
ing position of the code within the first code segment is uniformly distributed. so that

]
Probg v} = —. {BS)
obg {r] %
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Thus
K K k 1
E{K\} = Y k Probg tk} = ¥ — = (K + 1), (B6)
k=1 o K 2
\ K s K k.’. 1
EtKi} = Y k= Probg tk} = ¥ — = —(K + DK + 1. (B7)
k=1 o1 K 6
Using Eqgs. (B6) and (B7) in Eq. (B3},
L -1
EM -2} = -1 B8
{ J X (B8)
Using Eqs. (B8). (B7). and Eq. (B4), we see that
K° | L-1 1 (K+ DHRK + 1)
= -1 + = . B9
Y PR e -
k 1 (k]P0
= e— = — —_— + .
L 3L 3L°
Case2: L = K
For this case M = | or 2. For L < K, we start by computing two probabilities: the probabil-

ity that K| = L (or equivalently, M = 1) denoted by Prob{K | = L} and the probability that K, = v
where v is a positive integer less than L (or equivalently, M = 2) denoted by Prob{v and v < L}. It

is straightforward to show that

K —-L +1
ProblK, = L} = ——————,
rob{K } %
and
Probfv and v < L} = Prob{v | v < L} * Probfv < L}
_ L L-1
L -1 K
-1
e
Thus
K-L+1 L ]
K3} = L? + k*
EiKi} =L X Y X

(L - HL 2L - 1)

1
~
[ 9]
[
>
|
x|~
+
—
+
>x|—
|~

(B10)

(B1D)

(B12)
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Note for L < K that Eq. (B4) does not hold. Let Probg, {v} be the probability that K, = v wnere

v =0,1, .., L — 1. It is apparent that

K-L+1

Probg {0} = Prob{K, = L} = X ,

and for v > 0,

Probg {v} = Prob{v | v > 0} - Prob{v > 0},

1 L-1 _ 1

Thus

Using Eqgs. (B12) and (B15), it can be shown that

6 - F i+ K3
LZ
_k-L+1t L @L-DLEL-D
K 3 KL*
I T O
3 K 3KL
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(B13)

(B14)

(B15)

(B16)




Appendix C
CONDITIONS FOR CONVERGENCE SOLUTIONS

If the solution given by Eq. (43) is valid, then L must be greater than K3;5. Thus

K3dB = Nau.\' 1 + 1____ < L. (Cl)
L-SL,
Reducing Eq. (C1) further
1_ < L _ 1. (C2)
L SL Naa

Now if L < N,,.. Eq. (C2) does not hold. Thus for Eq. (43) to be a valid solution. L > N,,..
Equation (C2) can be further simplified to show that

— N,

[{}IAN

SL, > —————. (C3)
/ L(L — N,

We show that one of the solutions given by Eqs. (43) or (44) is valid. We do this by showing
that if no solution exists, a contradiction results. Assume no solution exists. Thus

KﬁdB = Nmu 1+ l— = L. (CH
L - SL,

and by using Eq. (44) with N, = N — 1,

" i
1 1
K3dB = Nmu Tl; + '\/T; + p— < L. (CH
= “ Nulu ’ SL(/
Using Eq. (C5). we can show that L/N,,, > |I.
Solving for S~Lq in Eq. (C4) results in

—_ I .
SL, = 1CH
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and solving for :SZq in Eq. (C5) results in
1 1 -
5 < SL,. (C7

Naur L _ l B _ _l_
N 2 2

Thus, Egs. (C6) and (C7) imply that

l 1 . (C8)

Equation (C8) can be simplified to

L L A
-1 < -5 5 C9
Nuu.x [ Nulu 1 L Nmu‘ 2 J 2 ( )
Seta = L/N,,. Thus
ala — 1) < oz—l 2—*‘- (C10)
2 2

This incquality results in the contradicting inequality. 0 < ——. Hence. the original assumption that

no solution exists for Kyg / N, must be false.

24




